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Abstract
We argue that frustrated Josephson junction arrays may support a topologically
ordered superconducting ground state, characterized by a non-trivial ground-
state degeneracy on the torus. This superconducting quantum fluid provides
an explicit example of a system in which superconductivity arises from
a topological mechanism rather than from the usual Landau–Ginzburg
mechanism.

PACS numbers: 74.20.Mn, 03.65.Fd, 05.30.Pr

It is by now widely believed that quantum phase transitions describe changes in the
entanglement pattern of the complex-valued ground-state wavefunction and that the
universality classes of these quantum ground states define the corresponding quantum orders
[1]. When there is a gap in the spectrum. the quantum ordered ground state is called
topologically ordered [2]; its hallmark is a ground-state degeneracy depending only on the
topology of the underlying space.

The best known example of topological order is given by Laughlin’s quantum
incompressible fluids [3] describing the ground states responsible for the quantum Hall effect
[4]. Soon after Laughlin’s discovery, it was conjectured that an analogous mechanism could
enable superconductivity [5] in high temperature or granular superconductors, although the
original anyon superconductivity mechanism has now been ruled out experimentally, due to
the observed parity and time reversal invariance of the ground states of the relevant physical
systems.

Josephson junction arrays (JJAs) have been regarded by several authors [6–9] as
controllable devices, which may exhibit topological order. Planar arrays display a
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characteristic insulator–superconductor quantum phase transition at T = 0 [10]. In [8].
we pointed out that two-dimensional JJAs may be mapped onto an Abelian gauge theory with
the Chern–Simons term and evidenced how the topological gauge theory, which naturally
allows for the appearance of topological order, together with duality may be useful to describe
the phase diagram of these devices.

The gauge theory formulation of JJAs [8] clearly evidences that the superconducting
ground state is a P- and T-invariant generalization of Laughlin’s incompressible quantum
fluid. The simplest example of a topological fluid [11] is a ground state described by
a low-energy effective action given solely by the topological Chern–Simons term [12].
S = k/4π

∫
d3xAµεµνα∂νAα , for a compact U(1) gauge field Aµ whose dual field strength

Fµ = εµνα∂νAα yields the conserved matter current. In this case, the degeneracy of the
ground state on a manifold of genus g will be kg (or (k1k2)

g if k = k1/k2 is a rational
number): for planar unfrustrated JJAs, one finds that the topological fluid is described by two
k = 1 Chern–Simons gauge fields of opposite chirality and, thus, there is no degeneracy of
the ground state [8, 13].

In this letter, we argue that frustrated JJAs may support a topologically ordered ground
state described by a pertinent superconducting quantum fluid, thus providing an interesting
and explicit example of a system in which superconductivity arises from the topological
mechanism proposed in [13] rather than from the usual Landau–Ginzburg mechanism. In the
presence of nq , offset charge quanta per site and nφ external magnetic flux quanta per plaquette
in specific ratios, Josephson junction arrays might support incompressible quantum fluid [14]
phases corresponding to purely two-dimensional quantum Hall phases for either charges [15]
or vortices [16]. In this letter, we shall show that if quantum Hall phases for charges or vortices
are realized, then JJAs naturally support a topologically ordered ground state and a phase in
which they behave as a topological superconductor [13]; there is, in fact, a renormalization of
the Chern–Simons coefficient yielding a non-trivial ground-state degeneracy on the torus (and
in general on manifolds with non-trivial topology).

We shall consider JJAs fabricated on a square planar lattice of spacing l = 1 made of
superconducting islands with nearest neighbour Josephson couplings of strength EJ [10]. Each
island has a capacitance C0 to the ground; moreover, there are nearest neighbour capacitances
C. To implement a torus topology, we impose doubly periodic conditions at the boundary of
the square lattice.

In [8], we have shown that the zero-temperature partition function of JJAs may be written
in terms of two effective gauge fields Aµ (vector) and Bµ (pseudovector). In the low-energy
limit, the partition function is

Z =
∑
{Q0}
{M0}

∫
DAµ

∫
DBµ exp(−S),

(1)
S =

∫
dt

∑
x

−i
1

2π
AµKµνBν + iA0Q0 + iB0M0.

This form of the partition function also holds true with toroidal boundary conditions. The
gauge fields embody the original degrees of freedom through their dual field strengths
qµ ∝ KµνBν and φµ ∝ KµνAν representing, respectively, the conserved charge (vector)
current and the conserved vortex (axial) current. Kµν is the lattice Chern–Simons term [17],
defined by K00 = 0,K0i = −εij dj ,Ki0 = Siεij dj and Kij = −Siεij ∂0, in terms of forward
(backward) shift and difference operators Si (Ŝi) and di (d̂i). Its conjugate K̂µν is defined by
K̂00 = 0, K̂0i = −Ŝiεij d̂j , K̂i0 = εij d̂j and K̂ij = −Ŝj εij ∂0. The two Chern–Simons kernels
Kµν and K̂µν are interchanged upon integration (summation) by parts on the lattice.
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The topological excitations are described by the integer-valued fields Q0 and M0 and
represent unit charges and vortices rendering the gauge field components A0 and B0 integers
via the Poisson summation formula; their fluctuations determine the phase diagram [8]. In
the classical limit, the magnetic excitations are dilute and the charge excitations condense
rendering the system a superconductor: vortex confinement amounts here to the Meissner
effect. In the quantum limit, the magnetic excitations condense while the charged ones become
dilute: the system exhibits insulating behaviour due to vortex superconductivity accompanied
by a charge Meissner effect.

By rewriting the topological excitations as the curl of an integer-valued field

Q0 ≡ K0iYi, Yi ∈ Z,

M0 ≡ K̂0iXi, Xi ∈ Z,
(2)

we get the mixed Chern–Simons term as follows:

Z =
∑

{Xi,Yi }

∫
DAµ

∫
DBµ exp(−S),

(3)
S = − 1

2π
i
∫

dt
∑

x

A0K0i (Bi − 2πYi) + B0K̂0i (Ai − 2πXi) + AiKijBj .

From (3) one sees that the gauge field components Ai and Bi are angular variables due to their
invariance under time-independent integer shifts. Such shifts do not affect the last term in the
action, which contains a time derivative, and may be reabsorbed in the topological excitations
Xi and Yi , leaving also the first term of the action invariant. The low-energy theory is thus
compact.

In analogy with the conventional quantum Hall setting one should expect the charge
and vortex transport properties to depend on the ratios of the offset charges (i.e. the filling
fractions) (nq/nφ) and (nφ/nq), respectively. Due to the periodicity of the charge–vortex
coupling, however, nφ (nq) is defined only modulo an integer as far as charge (vortex) transport
properties are concerned. Using this freedom. one may define effective filling fractions (we
shall assume nq � 0, nφ � 0 for simplicity) as

νq ≡ nq

nφ − [nφ]− + [nq]+
, 0 � νq � 1,

(4)
νφ ≡ nφ

nq − [nq]− + [nφ]+
, 0 � νφ � 1,

where [nq]± indicate the smallest (greatest) integer greater (smaller) than nq . Of course, these
effective filling fractions are always smaller than 1.

In [8], we assumed the existence of these quantum Hall phases and discussed them in
the framework of the gauge theory representation of Josephson junction arrays, showing that
depending on certain parameters of the array there are both a charge quantum Hall phase and
a vortex quantum Hall phase. Here, we will concentrate on the low-energy limit of the charge
quantum Hall phase, and we will show that the system has topological order and behaves as a
superconductor when charge condenses.

The pertinent low-energy theory is now given by

S =
∫

dt
∑

x

− i

π
AµKµνBν − iνq

π
AµKµνAν, (5)

with νq = p/n. The main difference with (1) is the addition of a pure Chern–Simons term for
the Aµ gauge field. We have also rescaled the coefficient of the mixed Chern–Simons coupling
by a factor of 2 (compare with (1)). This factor of 2 is a well-known aspect of Chern–Simons
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gauge theories [18]. Moreover, since in JJAs the charge degrees of freedom are bosons, the
allowed [8] filling fractions are given by νq = p

n
, with pn = eveninteger in accordance with

[19]. As a result, the action (5) may now be written in terms of two independent gauge fields
Aµ and B

q
µ = Bµ + νqAµ yielding

S =
∫

dt
∑

x

− i

π
AµKµνB

q
ν . (6)

In describing JJAs one has to require the periodicity of charge–vortex couplings; the
coupling of the topological excitations enforcing the periodicity of the mixed Chern–Simons
term AµKµνB

q
ν is then

S =
∫

dt
∑

x

· · · + ipA0Q0 + inB0M0, (7)

which can be rewritten as

S =
∑

x

· · · + ilpA0(Q0 + M0) + ilnB
q

0 M0. (8)

Due to the replacement Bµ → B
q
µ, the periodicities of the two original gauge fields are

Ai → Ai + πnai, ai ∈ Z,
(9)

Bi → Bi + πpbi, bi ∈ Z,

and

B
q

i → B
q

i + πpbi, bi ∈ Z. (10)

The resulting low-energy theory is thus, again, compact.
Using the representation (2), one may rewrite the mixed Chern–Simons term as

S =
∫

dt
∑

x

· · · − i
(pq/2)

2π

(
2A0

n

)
K0i

(
2B

q

i

p
− 2πYi

)

− i
(pq/2)

2π

2B
q

0

n
K0i

(
2Ai

n
− 2πXi

)
. (11)

In this representation. it is clear that the topological excitations render the charge–vortex
coupling periodic under the shifts

A′
i = 2Ai

n
→ A′

i + 2πai, ai ∈ Z,

(12)

B ′
i = 2B

q

i

p
→ B ′

i + 2πbi, bi ∈ Z.

This model corresponds to two Chern–Simons terms with coefficients ±k/4π with k = np/2
an integer. It is worth to point out that, since B

q
ν does not have a definite parity (is a linear

combination of a vector and a pseudovector), the model is not P- and T-invariant as it must be
due to the presence of the Chern–Simons term for the field Aµ.

The hallmark of topological order is the degeneracy of the ground state on manifolds
with non-trivial topology as shown by Wen [2]. The torus degeneracy on the lattice of the
Chern–Simons model was computed in [20]. For a single Chern–Simons term this degeneracy
is (k)g , where k is the integer coefficient of the Chern–Simons term, and g is the genus of the
surface. In our case, this degeneracy is 2 × (k)g = 2 × np

2 , since we have two Chern–Simons
terms. This degeneracy is exactly what is expected for a doubled Chern–Simons model [21],
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for which the physical Hilbert space is the direct product of the two Hilbert spaces of the
component models.

We will now demonstrate that the phase, where topological excitations Q0 condense while
M0 are dilute, describes an effective gauge theory of a superconducting state. The partition
function is

ZLE =
∑
{Q0}

∫
DAµ

∫
DBq

µ exp(−S),

(13)
S =

∫
dt

∑
x

− ik

2π
AµKµνB

q
ν +

ik

2π
A0(2πQ0).

To this end, note first that a unit external charge represented by an additional term
i2πa0(t, x)δxx0 is completely screened by the charge condensate, since it can be absorbed into
a redefinition of the topological excitations Q0. In order to characterize the superconducting
phase, we introduce the typical order parameter namely, the ’t Hooft loop of length T in the
time direction:

LH ≡ exp

(
iφ

κ

2π

∫
dt

∑
x

φµBµ

)
, (14)

where φ0(t, x) = (θ(t + T/2) − θ(t − T/2))δxx1 − (θ(t + T/2) − θ(t − T/2))δxx2 and
φi(−T/2, x), φi(T /2, x) are unit links joining x1 to x2 and x2 to x1 at fixed time and vanishing
everywhere else. Its vacuum expectation value 〈LH 〉 yields the amplitude for creating a
separated vortex–antivortex pair of flux φ, which propagates for a time T and is then annihilated
in the vacuum.

Since we replaced Bµ → B
q
µ, we may rewrite the ’t Hooft loop as

LH ≡ exp

(
iφ

κ

2π

∫
dt

∑
x

(
φµBq

µ − p

n
Aµφµ

))
. (15)

To compute 〈LH 〉, one should integrate first over the gauge field B
q
µ to get

〈LH 〉 ∝
∑
{Q0}

∫
DAµδ(K̂µνAν − φφµ) exp iφ

κ

2π

(∫
dt

∑
x

A0(2πQ0) − p

n
Aµφµ

)
. (16)

The sum over Q0 enforces the condition that k
2π

A0 be an integer. As a consequence,
K̂i0A0 = 2π

k
ni = φφi with ni an integer. We thus have

φ = 2π

k
q, q ∈ Z. (17)

Thus, 〈LH 〉 vanishes for all fluxes different from an integer multiple of the fundamental fluxon,
which is just the Meissner effect. In the low-energy effective gauge theory, vortex–antivortex
pairs are confined by an infinite force which also becomes logarithmic upon including higher
order Maxwell terms.

From (11), one has (depending on if p is an even integer or n is an even integer) either that
n is the charge unit with p/2 units of charge, or, vice versa, that is, p is the charge unit with
n/2 units of charge. By rewriting (17) as φ = 2

pn
2πn, one finds the standard flux quantization

φ = 2π
Ne

n, where e is the charge unit and N is the number of units of charge.
Summarizing, frustrated planar JJAs in the quantum Hall phases provide an explicit

example of both topological order and a new superconducting behaviour [13] analogous to
Laughlin’s quantum Hall fluids.
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